首页> 外文OA文献 >Deep Reinforcement Learning framework for Autonomous Driving
【2h】

Deep Reinforcement Learning framework for Autonomous Driving

机译:自动驾驶的深度强化学习框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Reinforcement learning is considered to be a strong AI paradigm which can beused to teach machines through interaction with the environment and learningfrom their mistakes. Despite its perceived utility, it has not yet beensuccessfully applied in automotive applications. Motivated by the successfuldemonstrations of learning of Atari games and Go by Google DeepMind, we proposea framework for autonomous driving using deep reinforcement learning. This isof particular relevance as it is difficult to pose autonomous driving as asupervised learning problem due to strong interactions with the environmentincluding other vehicles, pedestrians and roadworks. As it is a relatively newarea of research for autonomous driving, we provide a short overview of deepreinforcement learning and then describe our proposed framework. Itincorporates Recurrent Neural Networks for information integration, enablingthe car to handle partially observable scenarios. It also integrates the recentwork on attention models to focus on relevant information, thereby reducing thecomputational complexity for deployment on embedded hardware. The framework wastested in an open source 3D car racing simulator called TORCS. Our simulationresults demonstrate learning of autonomous maneuvering in a scenario of complexroad curvatures and simple interaction of other vehicles.
机译:强化学习被认为是强大的AI范例,可用于通过与环境交互并从错误中学习来教机器。尽管具有实用性,但尚未成功应用于汽车应用中。受Google DeepMind成功学习Atari游戏和Go的示范的启发,我们提出了使用深度强化学习进行自动驾驶的框架。这是特别相关的,因为由于与环境(包括其他车辆,行人和道路工程)的强烈相互作用,很难将自动驾驶视为监督学习问题。由于它是自动驾驶研究的一个相对较新的领域,因此我们简要介绍了深度强化学习,然后描述了我们提出的框架。它集成了递归神经网络进行信息集成,使汽车能够处理部分可观察的场景。它还集成了最近的注意力模型工作,以关注相关信息,从而降低了在嵌入式硬件上部署的计算复杂性。该框架在名为TORCS的开源3D赛车模拟器中进行了测试。我们的仿真结果证明了在复杂的道路曲率和其他车辆的简单交互情况下的自动驾驶学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号